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Effects of heat release on turbulent shear flows.
Part 3. Buoyancy effects due to heat release
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An integral method is presented for determining effects of buoyancy due to heat
release on the properties of reacting jets and plumes. This method avoids the Morton
entrainment hypothesis entirely, and thus removes the ad hoc ‘entrainment modelling’
required in most other integral approaches. We develop the integral equation for
the local centreline velocity uc(x), which allows modelling in terms of the local flow
width δ(x). In both the momentum-dominated jet limit and buoyancy-dominated
plume limit, dimensional arguments show δ(x) ∼ x, and experimental data show the
proportionality factor cδ to remain constant between these limits. The entrainment
modelling required in traditional integral methods is thus replaced by the observed
constant cδ value in the present method. In non-reacting buoyant jets, this new integral
approach provides an exact solution for uc(x) that shows excellent agreement with
experimental data, and gives simple expressions for the virtual origins of jets, plumes
and buoyant jets. In the exothermically reacting case, the constant cδ value gives an
expression for the buoyancy flux B(x) that allows the integral equation for uc(x) to
be solved for arbitrary exit conditions. The resulting uc(x) determines the local mass,
momentum and buoyancy fluxes throughout the flow, as well as the centreline mixture
fraction ζc(x) and thus the flame length L. The latter provides the proper parameters
Ω and Λ that determine buoyancy effects on the flame, and provides power-law
scalings in the momentum-dominated and buoyancy-dominated limits. Comparisons
with buoyant flame data show excellent agreement over a wide range of conditions.

1. Introduction
Bridging the gap between fluid dynamics and combustion science requires an

understanding of how heat released in exothermic chemically reacting turbulent shear
flows alters the entrainment and mixing properties relative to a non-reacting flow
under otherwise identical conditions. A fundamentally based general equivalence
principle, applicable to mixing-limited reacting flows (Tacina & Dahm 2000; herein-
after referred to as Part 1), has been shown to allow heat release effects on shear
flows to be deduced from the scaling laws that govern the corresponding non-reacting
flow. When applied to turbulent jets, this equivalence principle was shown in Part 1
to predict accurately the effects of heat release in the near and far fields of planar
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and axisymmetric turbulent jet flames under conditions for which buoyancy effects
are negligible. This same principle was also shown (Dahm 2005, hereinafter referred
to as Part 2) to predict correctly the fundamentally different effects of heat release on
the properties of turbulent mixing layers when buoyancy effects can be neglected. The
present paper addresses the effects of buoyancy in exothermic reacting turbulent jets,
plumes and buoyant jets. It uses the equivalence principle relating non-reacting and
exothermic reacting shear flows to develop a simple integral method that determines
buoyancy effects in such flows via the change in total buoyancy flux with downstream
distance throughout the flow.

Reacting jets and plumes differ from most other combustion systems by the large
buoyancy forces that can act on the flow due to heat release. Unlike simple non-
reacting plumes, for which the total buoyancy flux is constant, in reacting flows,
the buoyancy flux can increase dramatically owing to heat release along the length
of the flame. The resulting variation in buoyancy flux can produce large changes
in the flow properties and the flame length relative to the corresponding flow with
constant buoyancy flux. Integral methods based on various approximations have
been widely used to account for the evolving flow properties in such exothermic
reacting jets, plumes and related flows (e.g. Steward 1970; Heskestad 1981; Zukoski,
Kubota & Cetegen 1981; Cetegen, Zukoski & Kubota 1984; Peters & Göttgens 1991;
Blake & McDonald 1995; Blake & Coté 1999; Kaminski, Tait & Carazzo 2005). In
all such integral methods, the partial differential equations for conservation of mass,
momentum, and energy are integrated across the flow, together with self-similar forms
for the lateral profiles of velocity and density, to provide simple ordinary differential
equations for various integral flow properties such as the mass flux m(x), momentum
flux J (x) and buoyancy flux B(x). These integral equations can be readily solved
with certain modelling approximations to determine the resulting changes in flow
properties with increasing downstream distance x.

Most integral methods to date for buoyant jets and plumes have been based on an
approximation widely referred to as the ‘Morton entrainment hypothesis’, introduced
by Morton, Taylor & Turner (1956) (see also Morton 1958; List 1982; Turner 1986).
This can be written in various forms that amount to a representation of the local mass
entrainment rate into the flow as dm/dx ∼ αm(x)/δ(x), where m(x) is the local mass
flux, δ(x) is the local self-similar profile width, and α is an ‘entrainment coefficient’.
Measurements in non-reacting flows have shown that such an entrainment coefficient
would need to vary from α ≈ 0.057 in momentum-dominated jets having negligible
buoyancy, to α ≈ 0.082 in plumes driven entirely by buoyancy (e.g. Gebhart et al.
1988; Linden 2000). As a result, α must be changed as the ratio of momentum and
buoyancy varies along the flow. Lacking a fundamental basis on which to model this
entrainment coefficient, integral methods based on the Morton entrainment hypothesis
represent the local value of α by various ad hoc expressions in terms of the Froude
number. Numerous such models for α have been proposed, as summarized by Gebhart
et al. (1988), and the various integral methods differ largely by their choice for the
‘entrainment model’ for α (e.g. Teixeira & Miranda 1997; Kaminski et al. 2005).
Chen & Rodi (1980) do not present an integral method per se, but use the integral
equations to develop requirements for self-similarity in buoyant jets.

Here we develop an approach that avoids the Morton entrainment hypothesis
altogether, and thereby removes the need for such ad hoc ‘entrainment modelling’.
Rather than working in terms of an integral equation for dm/dx, we use the integral
equation for the momentum flux dJ/dx to develop a corresponding equation for
the local centreline velocity uc(x). This has the advantage that the modelling can
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be done in terms of the local flow width δ(x), for which dimensional considerations
require the far-field scaling δ ∼ x in both the momentum-dominated jet limit and
the buoyancy-dominated plume limit, and for which experimental data further show
that the proportionality constant cδ remains unchanged in the far field from the jet
limit to the plume limit (Papanicolaou & List 1988). Thus, whereas α varies between
these two limits and must be modeled, cδ is invariant between these limits and thus
can be represented by a single constant without any further modelling. In effect, the
ad hoc entrainment modelling required in traditional integral methods is replaced in
the present approach by the observed constant value of cδ . The present results are
solely applicable to the far field, where only the source momentum flux J0 or source
buoyancy flux B0 remain relevant, and where thus δ ∼ x follows immediately from
dimensional considerations; entrainment models in some traditional integral methods
allow a represention of the flow in the near field, where the far-field scaling δ ∼ x

does not apply.
In non-reacting buoyant jets, for which B(x) is constant, the present integral

approach is found to give an exact solution for the centreline velocity uc(x). This
solution is simpler than that obtained by Morton (1958) from the entrainment
hypothesis, it avoids an ad hoc entrainment model, and it is seen herein to provide
excellent agreement with buoyant jet data. Moreover, the present solution also
provides a simple expression for the virtual origin of buoyant jets, as well as for
the pure jet and pure plume limits.

In exothermically reacting buoyant jet flames, for which the buoyancy flux B(x)
increases along the length of the flame, the data of Papanicolaou & List (1988) that
show cδ to be independent of buoyancy allows the constant cδ value to be introduced
in the integral equation for dB/dx. This gives a simple expression for B(x) in terms
of the centreline velocity uc(x). Introducing this in the integral momentum equation
then provides a simple integral equation for uc(x) that can be solved for arbitrary exit
conditions. The resulting uc(x) then determines the mass flux m(x), the momentum
flux J (x) and the buoyancy flux B(x) throughout the flow. The mass flux in turn
determines the centreline mixture fraction ζc(x), which determines the flame length L

in terms of the reaction stoichiometry. Comparisons with data for centreline velocity
decay and flame length in buoyant jet flames show good agreement over a wide
range of flame conditions. Moreover, the resulting flame length expression provides
the proper parameters that characterize the extent to which buoyancy effects are
significant throughout the flame.

From these results, it will be seen herein that, when the inertial effects of the reduced
densities due to heat release have been properly accounted for by the equivalence
principle of Parts 1 and 2, then even the effects of buoyancy produced by heat release
can be directly obtained from the scaling laws for the corresponding non-reacting flow
under otherwise identical conditions. The essential fundamental change produced in
the flow by heat release is thus the inertial change resulting from the reduced density.
Once this inertial effect has been accounted for by the equivalence principle, then
secondary effects of heat release, including buoyancy effects, follow directly from the
scaling laws that govern the non-reacting flow. The equivalence principle thus allows
scaling laws for exothermic reacting flows to be directly obtained from the scaling
laws for non-reacting flows.

The paper is organized as follows. Section 2 lays out essential preliminaries and
gives the scalings for δ and uc in the jet and plume limits. Section 3 then develops the
integral method for buoyant jets and obtains the exact solution for the non-reacting
case. Section 4 extends the integral method to the exothermic reacting case, and then
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examines parametric effects of heat release in buoyant jet flames and compares results
from the integral method with measured values. Section 5 derives the criterion for
the flame length in the integral method, and compares the resulting predicted flame
lengths with measured values from buoyant jet flames. Section 6 discusses implications
of this integral method for understanding heat release effects on the flame length and
combustion properties of buoyant flames.

2. Scaling in the jet and plume limits
The principal aim of this paper is to clarify the far-field scaling of exothermic

reacting turbulent buoyant jets, for which the buoyancy flux B(x) increases along
the downstream distance x owing to combustion heat release. However, since the
local value of dB/dx is set by the rate of heat release within the flow, which in
turn is determined by the rate of entrainment dm/dx into the flow, the resulting
coupling makes the exothermic reacting flow scaling significantly non-trivial. There
are, however, limit cases in which the scaling can be readily obtained, which provide
the starting point for the present integral method for the complete problem. In this
section, we thus first consider the non-reacting limit and develop the momentum-
dominated jet scaling and the buoyancy-dominated plume scaling. These then provide
the basis for the integral method for non-reacting turbulent buoyant jets developed
in § 3, which in turn leads to the integral method for exothermic reacting turbulent
buoyant jets in § 4.

2.1. Mass, momentum and buoyancy fluxes

As indicated in figures 1 and 2, the flow in the self-similar far field produced by
any finite-area source, through which issue exit values of the mass, momentum and
buoyancy fluxes, respectively denoted mE, JE and BE , can be equivalently represented
by a point source at x = 0 having source momentum flux J0 and buoyancy flux B0,
but with the source mass flux m0 ≡ 0. Through proper choice of the source values
J0 and B0, and the exit value xE , the flow produced by the point source will have
m(xE) = mE, J (xE) = JE and B(xE) = BE , and thus, at sufficiently large downstream
distances x, will be identical to the flow produced by the actual finite-area source.

At any downstream location x from the source, the local mass flux m(x), momentum
flux J (x), and buoyancy flux B(x) are given by

m(x) ≡
∫ ∞

0

ρu(x, r)2πr dr, (1a)

J (x) ≡
∫ ∞

0

ρu2(x, r)2πr dr, (1b)

B(x) ≡
∫ ∞

0

g�ρu(x, r)2πr dr, (1c)

where �ρ(x, r) ≡ ρ∞ − ρ(x, r). The corresponding exit values are denoted mE, JE and
BE . Thus for a source with exit area AE , uniform exit velocity UE and uniform exit
density ρE the exit values are

mE = ρEUEAE, (2a)

JE = ρEU 2
EAE, (2b)

BE = g�ρEUEAE. (2c)
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mE, IE, BE

x = xE x = xE

x = 0
J0, B0

xE

ρE, UE, AE

mE = m(xE)
JE = J(xE)
BE = B(xE)

x

(a) (b)

Figure 1. Representation of (a) an actual finite-area source by (b) an equivalent ideal point
source at x ≡ 0 upstream of the exit plane, with the source mass flux m0 ≡ 0 and with the
source momentum flux J0 and buoyancy flux B0, chosen to match the exit values mE , JE and
BE at x = xE via (11) for jets, (16) for plumes, and (47) for buoyant jets.

For non-uniform exit conditions, mE, JE and BE are obtained by integrating in (1a)–
(1c) over the exit area. At sufficiently large downstream distances x from the source,
m(x) � mE and thus most of the fluid moving with the flow has been entrained from
the surrounding medium. As a consequence, the density ρ is approximately equal to
the effective surrounding fluid density ρeff

∞ of Part 1, where in the non-reacting case
ρeff

∞ ≡ ρ∞ and in the exothermic reacting case ρeff
∞ is given by (3b) or (4b) in Part 1.

In this ‘far field’, the mean streamwise velocity and density-difference profiles in the
non-reacting flow are self-similar in the scaled radial coordinate η ≡ r/δ(x), with the
profile shapes being approximately Gaussian and given by

u(x, r)

uc(x)
= f (η) where f (η) ≈ exp(−af η2), (3a)

�ρ(x, r)

�ρc(x)
= h(η) where h(η) ≈ exp(−ahη

2). (3b)

Here uc(x) denotes the local mean centreline velocity, δ(x) is the local profile width,
as indicated in figure 2, and is the mean centreline density difference. The constant af

in (3a) results from the choice of δ, here defined as the full width at which the mean
velocity has decreased to 5 % of its centreline value, while ah in (3b) is obtained from
Papanicolaou & List (1988), giving

af = 12.0, (4a)

ah = 10.7. (4b)
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uc (x)

δ(x)

f (η)

g

x

J0, B0

η = r/δ(x)

Figure 2. Self-similar far field of axisymmetric turbulent buoyant jets, showing the local flow
width δ(x) and centreline velocity uc(x) from the mean velocity profile f (η).

From (3) and (4) various integrals that arise in the analysis below can be evaluated as

I1 =

∫ ∞

0

f (η)2πη dη =
π

af

≈ 0.262, (5a)

I2 =

∫ ∞

0

f 2(η)2πη dη =
π

2af

≈ 0.131, (5b)

I3 =

∫ ∞

0

f (η)2πη dη =
π

ah

≈ 0.294, (5c)

I4 ≡
∫ ∞

0

f (η)h(η)2πη dη =
π

(af + ah)
≈ 0.138. (5d)

From (1)–(5), the mass flux m(x), momentum flux J (x) and buoyancy flux B(x) are
given in terms of uc(x), δ(x) and �ρc(x) as

m(x) ≈ I1ρ∞uc(x)δ2(x), (6a)

J (x) ≈ I2ρ∞u2
c(x)δ2(x), (6b)

B(x) ≈ I4g�ρc(x)uc(x)δ2(x). (6c)
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The expressions in (6a)–(6c) provide the starting point for the integral method
developed herein. Note that fluctuation correlations in (1a)–(1c), which have for
clarity been omitted in (5a)–(5d), lead only to comparatively small changes in I1–I4

which are accounted for as shown below.

2.2. The jet limit

2.2.1. Scaling laws for δ(x) and uc(x)

The term ‘jet’ refers to the flow produced by an ideal point source of axial
momentum for which the source mass flux is zero, namely m0 ≡ 0, and the local
buoyancy flux is zero throughout the flow, namely B(x) ≡ 0. Since no buoyancy acts
on the fluid, the momentum flux J (x) at all downstream distances x must remain
constant at the source value J0. The source momentum flux is then the only integral
invariant of the flow, and thus in the self-similar far field the local flow width δ(x)
and the local mean centreline velocity uc(x) can depend only on J0, the downstream
distance x and the ambient fluid density ρ∞. As a result, on dimensional grounds the
scalings for δ and uc in jets must be

δ ∼ x, (7a)

uc ∼ (J0/ρ∞)1/2x−1, (7b)

with the consequence that the proportionality constants cδ and cu in (7a) and (7b)
must be the same for all jets. Measurements in jets (e.g. Papanicolaou & List 1988)
have shown these scaling constants to be

(cδ)j ≈ 0.36, (8a)

(cu)j ≈ 7.2, (8b)

where the subscript ‘j ’ denotes constants applicable to the jet-limit scaling. From (6a),
(7) and (8), the resulting mass flux scaling in jets is thus

m(x) = I1(cu)j (cδ)
2
j (ρ∞J0)

1/2x. (9)

For later reference in relation to exothermic reacting buoyant jet flames, figure 10 of
Part 1 shows experimental data from numerous far-field studies of highly exothermic
jet flames, where �ρ/ρ∞ is not small. Those data confirm that even when �ρ/ρ∞
is large, the δ ∼ x far-field scaling in (7a) applies with the same cδ as in (8a) found
by Papanicolaou & List (1988) for small �ρ/ρ∞. The interpretation that non-small
values of �ρ/ρ∞ may lead to departures from δ = cδx is attributable to the fact that,
in most non-reacting buoyant jet experiments, large �ρ/ρ∞ values occur only near
the jet source, where the far-field scaling δ ∼ x does not apply. Such departures from
the scaling in (7a) and (8a) are thus due to near-field effects, and not an effect of
non-small �ρ/ρ∞ in the far field, where the present method applies.

2.2.2. The virtual origin xE

The results in (7)–(9) are for the flow produced by an ideal point source at x ≡ 0,
namely one that introduces momentum flux J0 but no source mass flux; i.e m0 ≡ 0.
However, real jets are typically produced by finite-area sources that introduce a non-
zero exit mass flux mE when producing the exit momentum flux JE . Proper account
must be taken to relate the exit values mE and JE to the point source values m0 and
J0 via the virtual origin.

Figure 1 shows the basic principle involved in determining the effective distance xE

of the finite-area exit from the ideal equivalent point source, often termed the ‘virtual
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origin’. If x is measured from the ideal point source, then xE is the downstream
distance at which the resulting mass flux m(xE) = mE and the resulting momentum
flux J (xE) = JE . The latter is automatically satisfied, since in jets the momentum flux
J (x) ≡ J0, and thus the appropriate value of J0 for the point source to produce the
same flow as the actual source is J0 = JE . Matching the resulting mass flux m(xE)
from (9) to the actual exit mass flux mE then requires

mE = I1(cu)j (cδ)
2
j (ρ∞J0)

1/2xE, (10)

from which

xE =

√
π/2

I1(cu)j (cδ)
2
j

[
2mE

(πρ∞JE)1/2

]
︸ ︷︷ ︸

≡d∗

. (11)

Thus xE in (11) ensures that, for the jet limit, m(xE) = mE and J (xE) = JE . For the
values of I1, (cu)j and (cδ)j in (5a), (8a) and (8b), this gives the virtual origin for jets
as xE ≈ 3.6d∗, where d∗ is the ‘far-field equivalent source diameter’. From its definition
in (11), the equivalent diameter for a circular nozzle with uniform exit density ρE and
velocity UE leads to the classical result d∗ = (ρE/ρ∞)1/2dE .

When, as is common in practice, x is used to denote the downstream distance
measured from the exit of the finite-area source, rather than the distance from the
ideal point source, then x in (7)–(9) must be replaced by x + xE as figures 1 and 2
indicate, with xE from equation (11).

2.3. The plume limit

2.3.1. Scaling laws for δ(x) and uc(x)

A ‘plume’ is produced by a point source for which the source mass and momentum
fluxes are both zero, namely m0 ≡ 0 and J0 ≡ 0, with the flow created instead by the
buoyancy flux B0 introduced by the source. The positive buoyancy that acts on the
fluid causes the momentum flux J (x) to increase with x. In the absence of reaction heat
release or other effects that change the total buoyancy flux B , the source buoyancy
flux B0 is then the only integral invariant of the flow. Thus in the self-similar far field,
the local flow width δ(x) and the local mean centreline velocity uc(x) can depend only
on B0, the downstream distance x, and the ambient fluid density ρ∞. On dimensional
grounds, the scalings for δ and uc in plumes must thus be

δ ∼ x, (12a)

uc ∼ (B0/ρ∞)1/3x−1/3. (12b)

The proportionality constants cδ and cu in the far-field scalings in (12) must then be
the same for all plumes, and from Papanicolaou & List (1988) are found to be

(cδ)p ≈ 0.36, (13a)

(cu)p ≈ 4.0, (13b)

where the subscript ‘p’ denotes constants applicable to the plume-limit scaling. For
later reference, from (6a), (6b), (12) and (13) the resulting mass and momentum flux
scalings in plumes are thus

m(x)/ρ∞ ≈ I1(cu)p(cδ)
2
p(B0/ρ∞)1/3x5/3, (14a)

J (x)/ρ∞ ≈ I2(cu)
2
p(cδ)

2
p(B0/ρ∞)2/3x4/3, (14b)
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As noted in § 2.2.1, even when the local density difference is not small, the δ ∼ x

far-field scaling in (12a) still applies with the same cδ as in (13a). The common
interpretation that large values of �ρ/ρ∞ lead to deviations from this scaling is due
to the fact that, in most non-reacting plume experiments, large �ρ/ρ∞ values occur
only near the jet source, where the far-field scaling δ ∼ x does not apply. Departures
from the scaling in (12a) and (13a) then result from near-field effects, and are not a
result of �ρ/ρ∞ in the far field where the present method applies.

2.3.2. The virtual origin xE

The results in (12)–(14) are for plumes produced by an ideal point source at x ≡ 0
that introduces buoyancy flux B0 but no mass flux; i.e. m0 ≡ 0. However, real plumes
are typically created by finite-area sources that produce an exit mass flux mE and
an associated exit momentum flux JE in producing the exit buoyancy flux BE . A
properly chosen virtual origin xE must therefore be introduced to match the mass
and momentum fluxes m(xE) and J (xE) to the exit values mE and JE .

Figure 1 again serves to show the basic principle involved. If x is measured from the
ideal point source, then xE is the value at which the resulting mass flux m(xE) = mE

and B(xE) = BE . The latter is automatically satisfied, since in plumes B(x) ≡ B0, and
thus the buoyancy flux required for the point source to produce the same flow as the
actual source is B0 = BE . From (14a) the mass flux matching m(xE) =mE requires

(mE/ρ∞) ≈ I1(cu)p(cδ)
2
p(B0/ρ∞)1/3x5/3

E , (15)

from which the virtual origin is

xE =

(
1

I1(cu)p(cδ)2p

)3/5 [
(mE/ρ∞)3/5

(BE/ρ∞)1/5

]
. (16)

It may be readily verified that matching the momentum flux J (xE) in (14b) to the
exit value JE gives the same result for the virtual origin as in (16). Thus, xE in (16)
ensures that m(xE) =mE , J (xE) = JE , and B(xE) = BE .

When, as is often the case, x is used to denote the downstream distance measured
from the exit of the finite source, rather than the distance from the ideal point source,
then x in (12)–(14) must be replaced by x + xE , with xE from (16).

3. Scaling of buoyant jets
As a further step in developing the scaling for exothermically reacting turbulent

buoyant jets in § 4, we now use the results from § 2 to determine the scaling for non-
reacting buoyant jets. The term ‘buoyant jet’ denotes the flow produced by a point
source that introduces both an initial momentum flux J0 and initial positive buoyancy
flux B0; Morton (1958) refers to such flows as ‘forced plumes’. In the absence of heat
release, the local buoyancy flux B(x) remains constant at B0 for all downstream
distances x, but the momentum flux J (x) will increase as a result of the buoyancy
that acts on the fluid. In this section, we develop an integral method for such buoyant
jets and obtain an exact solution for the case of non-reacting buoyant jets.

3.1. Scaling parameters for buoyant jets

Since buoyant jets have one additional source parameter (either B0 or J0) relative to
the jet or plume limits in § 2, on dimensional grounds the scalings for δ and uc must
involve an additional length scale l∗ and an additional velocity scale u∗. These are, in
turn, the only such quantities that can be formed from J0, B0 and ρ∞, and therefore
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must be

l∗ ≡ (J0/ρ∞)3/5

(B0/ρ∞)1/2
, (17a)

u∗ ≡ (B0/ρ∞)1/2

(J0/ρ∞)1/4
. (17b)

Note that l∗ is sometimes referred to as the ‘Morton length scale’, and we will thus
also refer to u∗ as the ‘Morton velocity scale’. On dimensional grounds, the resulting
scalings for δ and uc in buoyant jets must thus be

δ(x)

l∗ = f1(χ), (18a)

uc(x)

u∗ = f2(χ), (18b)

χ ≡ x

l∗ . (18c)

The functions f1 and f2 must recover the jet-limit scaling as B0 → 0, for which l∗ → ∞
and thus χ → 0, and recover the plume-limit scaling as J0 → 0, for which l∗ → 0 and
thus χ → ∞. As a result, in the jet limit χ → 0 the scalings in (7a) and (7b) require

f1(χ) → (cδ)jχ, (19a)

f2(χ) → (cu)jχ
−1, (19b)

while in the plume limit χ → ∞ the scalings in (12a) and (12b) require

f1(χ) → (cδ)pχ, (20a)

f2(χ) → (cu)pχ−1/3. (20b)

3.2. The flow width (δ/ l∗) = f1(χ)

Comparing (19a) and (20a) it is apparent that in buoyant jets the flow width has the
same scaling f1(χ) ∼ χ in both the jet and plume limits, and from (8a) and (13a) even
the proportionality constant cδ is the same in both limits. Moreover, measurements
in non-reacting buoyant jets (Papanicolaou & List 1988; see also Kotsovinos & List
1977) show that cδ remains constant at this same value for all χ between the jet and
plume limits. This is consistent with the finding by Chen & Rodi (1980) that δ ∼ x is
a requirement for self-similarity. Thus for all χ

f1(χ) = cδ · χ, (21)

from which for all x

δ ≈ cδx, (22a)

with

cδ ≈ 0.36. (22b)

The invariance of cδ in (22a) and (22b) between the jet and plume limits will be seen
to here replace the ad hoc modelling of an ‘entrainment coefficient’ α used in most
other integral approaches for buoyant jets and plumes.

3.3. The centreline velocity (uc/u
∗) = f2(χ)

With δ(x) in (22), the integral equation for the momentum flux J (x) allows a
corresponding integral equation for the centreline velocity uc(x) in terms of the
buoyancy flux B(x).
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3.3.1. Integral form of the momentum equation

The local rate of change of axial momentum results from the buoyancy body force
as

d

dx
[ρu2(x, r)] = g�ρ(x, r), (23)

from which

d

dx

∫ ∞

0

ρu22πr dr =

∫ ∞

0

g�ρ(x, r)2πr dr. (24)

From (1b) and (1c) this becomes

d

dx
J (x) =

B(x)

uc(x)

∫ ∞

0

h(η)2πη dη∫ ∞

0

f (η)h(η)2πη dη

, (25)

from which

1

J

dJ

dx
= (I3/I4)

1

J (x)

B(x)

uc(x)
. (26)

From (6b) and (22)

J (x) = I2c
2
δρ∞u2

c(x)x2, (27)

and thus the left-hand side of (26) can be expressed as

1

J

dJ

dx
=

2

uc

duc

dx
+

2

x
, (28)

and the right-hand side of (26) can be expressed as

(I3/I4)
1

J (x)

B(x)

uc(x)
= 2σ

(B(x)/ρ∞)

u3
cx

2
, (29)

where

σ ≡ I3

2I2I4c
2
δ

. (30)

Substituting (28) and (29) into (26) thus gives a simple differential equation for uc(x)
in terms of B(x) as

duc

dx
+

uc

x
= σ

(B(x)/ρ∞)

u2
cx

2
. (31)

3.3.2. Integration for uc(x) when B(x) ≡ B0

Up to this point in § 3 there has been no restriction on the buoyancy flux B(x),
and thus the integral momentum equation in (31) applies even in exothermic reacting
buoyant jets, where B(x) varies. However when, as in non-reacting buoyant jets, B(x)
remains constant at the source value B0, then an exact solution for the centreline
velocity uc(x) can be obtained from (31). Changing to the dimensionless centreline
velocity and downstream coordinate

f2(χ) ≡ uc

u∗ , χ ≡ x

l∗ , (32a, b)
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when B(x) ≡ B0, the integral equation in (31) becomes

df2

dχ
+

f2

χ
= σ (χf2)

−2. (33)

This is equivalent to

d(χf2)
3 = 3σχ dχ (34)

which integrates to

f2 =
1

χ

[
3
2
σχ2 + C

]1/3
. (35)

The integration constant C is found by taking the jet-limit χ → 0, in which (35)
becomes

f2 → C1/3χ−1. (36)

Rewriting (36) in uc and x via (32) gives

uc → C1/3(J0/ρ∞)1/2x−1, (37)

and comparing with the jet scaling in (7b) and (8b) shows that

C = (cu)
3
j . (38)

As a check, note that taking the plume-limit χ → ∞ in (35) gives

f2 →
(

3
2
σ
)1/3

χ−1/3, (39)

which can be rewritten in uc and x via (32) to give

uc →
(

3
2
σ
)1/3

(B0/ρ∞)1/3x−1/3. (40)

Comparing (40) with the plume scaling in (12b) and (13b) shows that(
3
2
σ
)

= (cu)
3
p. (41)

From (30) with (5b)–(5d) and (22b), (41) gives (cu)p ≈ 4.5, which indeed compares
acceptably with the value 4.0 in (13b); the difference is due to the relatively small
contributions of the fluctuation correlations to In in (5), which as noted in § 2 have
been omitted here for clarity, but will be accounted for as shown below.

Substituting (38) and (41) into (35) gives the centreline velocity in buoyant jets as

uc(x)

u
∗ ≡ f2(χ) = χ−1

[
(cu)

3
j + (cu)

3
pχ2

]1/3
with χ ≡ x

l∗ , (42)

where u∗ and l∗ are from (17a) and (17b), and (cu)j and (cu)p are from (8b) and (13b).
Note that using the measured value (cu)p ≈ 4.0 given in (13b) from Papanicolaou &
List (1988) in (42) in place of (3σ/2)1/3 in (35) implicitly takes account of the
contributions from the fluctuation correlations to the integrals in (1a)–(1c).

The result in (42) is an exact solution for the centreline velocity uc(x) in non-
reacting turbulent buoyant jets that depends only on the observed constant value of
cδ in (21) and (22). This is compared in figure 3 with the measured centreline velocity
decay data in buoyant jets of Papanicolaou & List (1988). It is apparent that for
non-reacting buoyant jets, for which B(x) ≡ B0, the solution in (42) to the present
integral equation in (31) provides excellent agreement with measured values, and
supports the present integral approach. In contrast to the solution of Morton et al.
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χ ≡ x/l*

Figure 3. Verification of exact solution for centreline velocity uc(x) from present integral
method for non-reacting (B(x) ≡ B0) case, comparing the result in (42) (line) with experimental
measurements of Papanicolaou & List (1988) (symbols). Note jet-limit scaling f2(χ) → (cu)jχ

−1

as χ → 0 and plume-limit scaling f2(χ) → (cu)pχ−1/3 as χ → ∞.

(1956) and Morton (1958), the present approach effectively replaces ad hoc modelling
of an entrainment coefficient α with the observed constant value of cδ between the
jet and plume limits.

3.4. The source momentum flux J0 and the virtual origin xE

The result in (42) is for the non-reacting flow produced by an ideal point source
at x ≡ 0 that introduces momentum flux J0 and buoyancy flux B0 but no source
mass flux; i.e. m0 ≡ 0. Real buoyant jets produced by finite-area sources introduce
a non-zero exit mass flux mE in conjunction with the exit momentum flux JE and
exit buoyancy flux BE . A properly chosen virtual origin xE matches the mass flux
m(xE) and momentum flux J (xE) produced by the point source to the exit mass
and momentum fluxes mE and JE . In this case, both the virtual origin xE and the
appropriate source momentum flux J0 must be determined, since J (xE) 
= J0.

Figure 1 again serves to show the basic principle involved. If x is measured from
the ideal point source, then xE is the value at which the resulting mass flux m(xE) =
mE , the momentum flux J (xE) = JE , and the buoyancy flux B(xE) = BE . The latter
requirement is automatically satisfied, since the buoyancy flux remains constant in
the absence of heat release, and thus B0 = BE . The mass flux matching m(xE) = mE

requires from (6a) together with (17), (22), (32) and (42) that

mE = II c
2
δρ∞

(J0/ρ∞)5/4

(B0/ρ∞)1/2
χE

[
(cu)

3
j + (cu)

3
pχ2

E

]1/3
, (43)
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from which

χE

[
(cu)

3
j + (cu)

3
pχ2

E

]1/3
=

1

II c
2
δ

(mE/ρ∞)(BE/ρ∞)1/2

(J0/ρ∞)5/4
, (44)

where we have also made use of the fact that B0 = BE . The source momentum flux
J0 on the right-hand side of (44) is unknown, but can be obtained from matching the
momentum flux J (xE) = JE This requires from (6b) together with (17), (22), (32) and
(42) that

JE = I2c
2
δJ0

[
(cu)

3
j + (cu)

3
pχ2

E

]2/3
. (45)

Substituting from (44) for the bracketed term in (45) and rearranging gives

(J0/ρ∞) =

(
I2

I 2
1 c2

δ

)2/3
1

χ
4/3
E

[
(mE/ρ∞)2(BE/ρ∞)

(JE/ρ∞)

]2/3

, (46)

which may be substituted into (44) to determine the virtual origin ξE as

χE =

{(
I 2
1

I
5/2
2 cδ(cu)

3
j

)[
(JE/ρ∞)5/2

(mE/ρ∞)2(BE/ρ∞)

]
−

(
(cu)p
(cu)j

)3
}

. (47)

For the given exit mass, momentum and buoyancy fluxes mE, JE and BE of the
finite-area source, (47) is first used to find the virtual origin χE . With this χE , (46)
then gives the required momentum flux J0 of the point source, which together with
B0 ≡ BE then gives the Morton length and velocity scales, l∗ and u∗, via (17a) and
(17b). The resulting l∗ together with χE then gives the virtual origin xE . When, as is
commonly done in practice, x is used to denote the downstream distance measured
from the exit of the finite source, rather than the distance from the ideal point source,
then x in (22) for δ(x) and in (42) for uc(x) must be replaced by x + xE

Note, however, that (47) can become imaginary if JE is below a minimum allowable
value J ∗ given by

(J ∗/ρ∞) =

[
I

5/2
2 cδ(cu)

3
p

I 2
1

(mE/ρ∞)2(BE/ρ∞)

]2/5

. (48)

For JE <J ∗, the resulting flow is in a class that Morton (1959) refers to as ‘lazy
plumes’, for which JE is too low, even for a pure plume, to be compatible with the
combined values of mE and BE . In that case, the flow must initially be of a different
type, as indicated in figure 4. The flow downstream of the exit plane at xE does not
begin to entrain ambient fluid until buoyancy has raised the momentum flux J (x)
to the minimum compatible value J ∗ for a plume. Beyond this point, denoted x∗,
the resulting plume flow begins to entrain. A two-step procedure, related to that
of Morton (1959) and Morton & Middleton (1973), may then be used to find the
equivalent point source that produces the same flow for x � x∗ (see also Hunt & Kaye
2001). First note that the momentum equation in (26) may be equivalently written as

d

dx
J 2(x) = 2

(
I2I3

I1I4

)
B(x)m(x). (49)

For x <x∗, the flow does not entrain, and thus m(x <x∗) ≡ mE . Moreover, B(x <x∗) ≡
BE in the non-reacting case. For later reference, this applies even in the exothermic
reacting case since, owing to the absence of entrainment over x < x∗, essentially no
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x*
E

(x* – x0)

x = x*

mE, BE, J*

x = x0
mE, BE, JE

x*
E – (x* – x0)

x = 0
m0 = 0, B0, J0

x

(a) (b)

Figure 4. The virtual origin of buoyant jets with JE < J ∗ in (48), showing (a) typical flame
photograph from Delichatsios (1987) and (b) schematic representation. Since JE is incompatible
with mE and BE , no entrainment of ambient fluid occurs until buoyancy has increased the
momentum flux J (x) from the exit value JE at xE to the minimum value J ∗ at x∗ that is
compatible with mE and BE .

heat will be added over this region. As a result, (49) can be integrated from JE at x0

to determine the location x∗ at which J (x) has increased to J ∗ in (48), giving

(x∗ − x0) =
1

2

(
I1I4

I2I3

) (
J ∗2 − J 2

E

)
mEBE

. (50)

With m(x∗) = mE, B(x∗) =BE and J (x∗) = J ∗, the flow for x � x∗ corresponds to a
pure plume produced by an equivalent point source located upstream of the x∗-plane
by the distance x∗

E given by (16), and thus at xE = x∗
E − (x∗ − x0) upstream of the

actual exit plane, as in figure 4. When x is instead used to denote the downstream
distance measured from the exit of the actual source, rather than the distance from
the ideal point source, then x in δ(x) and uc(x) must be replaced by x + xE where xE

is obtained as above from x∗
E in (16) and (x∗ − x0) in (50) with J ∗ from (48).

4. Exothermic reacting buoyant jets
The results from § § 2 and 3 now allow a solution for exothermically reacting

turbulent buoyant jets. Note first that, even in the absence of any buoyancy effects,
the reduction in density due to heat release alters the inertia of the flow, and thereby
can affect the scaling laws for δ(x) and uc(x). Part 1 has shown that, because
of the bilinear variation of temperature with mole fraction required by enthalpy
conservation, the inertial effects of density changes due to exothermic reaction are
equivalent to a reduction in the ambient fluid density to an effective value determined
by the peak temperature and overall stoichiometry. The equivalence principle from
Part 1 thus allows the scaling laws for δ(x) and uc(x) in a non-reacting flow to be
properly extended to the corresponding exothermically reacting flow by replacing the
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X = Xs

X < XsT∞
eff

T0 ρ0

ρ∞
eff

T∞
ρ∞

T (η)

u (η)

ρ (η)

Figure 5. Schematic of equivalence principle from Parts 1 and 2, showing implications for
mean temperature (top) and density (middle) profiles in an exothermically reacting jet. Solid
lines show profiles in exothermic reacting flow; dashed lines show profiles in nonreacting flow
produced by simple mixing between the actual source values T0 and ρ0 effective ambient values

T
eff

∞ and ρ
eff
∞ . Heavy line shows resulting agreement for X > XS , where velocity (bottom) is

large, ensuring proper accounting for dominant inertial effects of heat release.

ambient density ρ∞ with ρeff
∞ , where

ρeff
∞ = ρ

(
T∞

T
eff

∞

)
with T eff

∞ ≡ T0 +
Ts − T0

1 − Xs

, (51)

with T0 and T∞ the source and ambient fluid temperatures, and TS and XS the
stoichiometric values of the temperature and jet-fluid mole fraction.

This equivalence is shown for the mean temperature, density and velocity profiles
in figure 5. As discussed in Parts 1 and 2, where X >XS (heavy line) the temperature
and density profiles in the reacting flow (solid line) are the same as those in a non-
reacting flow (dashed line) resulting from simple mixing between the actual source
values and the effective ambient values in (51). The equivalence principle developed
in Part 1 thus ensures the correct density in those parts of the flow where the velocity
is highest, and thereby provides a fundamentally correct accounting for the inertial
effects of heat release on the far-field scaling laws for δ(x) and uc(x). These outer
length and velocity scales in turn determine the entrainment and mixing properties
and the resulting flame length in such flows. Parts 1 and 2 have verified that this
equivalence principle accurately predicts effects of heat release in both the near- and
far-fields of planar and axisymmetric turbulent jets, as well as in planar turbulent
mixing layers.
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This equivalence allows the results for non-reacting buoyant jet results to be
extended to address buoyancy effects due to heat release in exothermically reacting
jets and plumes. In such exothermically reacting buoyant jets, the radial profile in
(3b) of the nominal density-difference �ρ ≡ ρ∞ − ρ will no longer be self-similar, and
this might appear to preclude any integral method for such flows. However as noted
above, it is instead the effective density-difference profile (�ρ)eff ≡ ρ − (ρ∞)eff that is
relevant to momentum conservation in such flows, and this profile remains self-similar.
Closely related to this, Chen & Rodi (1980) show that δ ∼ x is a requirement for such
self-similarity, and thus is consistent with the present (22a). (Note also that localized
heat addition, as in the experiments of Bhat & Narasimha (1996) and Agrawal &
Prasad (2004), fundamentally precludes self-similarity and thus cannot be addressed
by the present method.)

We therefore return to the flow in § 3 issuing from an ideal point source that
introduces source values of the momentum flux J0 and buoyancy flux B0, as in
the previous section, but now the heat released by reaction produces an increase in
the buoyancy flux B(x). However, (21) and (22) show that δ(x) in buoyant jets is
independent of the ambient fluid density, and thus remains unchanged when ρ∞ is
replaced by ρeff

α experimental data confirming the invariance of δ(x) in jets with heat
release is given in Part 1. By contrast, the presence of B(x) in (31) shows that the
centreline velocity uc(x) is affected by buoyancy. In this section, the equation for the
buoyancy flux is shown to allow an expression for B(x) in terms of the centreline
velocity uc(x), and on substituting into (31) this is shown to provide a remarkably
simple equation for uc(x) into exothermically reacting turbulent buoyant jets.

4.1. The buoyancy flux B(x)

When, as is typically the case, the buoyancy is produced by temperature differences,
and when variations in the molecular weight and specific heat can be neglected (see
Part 1), then the buoyancy flux B(x) in (1c) is related to the heat flux Q(x) as

dB

dx
=

(
g

cpT∞

)
dQ

dx
, (52)

where g is the acceleration into gravity, cp is the specific heat of the stoichiometric
reactant mixture, and T∞ is the ambient temperature. For entrainment-limited mixing
and mixing-limited reaction, as typically applies in non-premixed or partially premixed
turbulent reacting flows, at any x-location upstream of the flame tip, the local rate of
heat release dQ(x)/dx is set by the local rate of entrainment dm(x)/dx via

dQ

dx
∼ �hc

dm

dx
, (53)

where �hc is the enthalpy of combustion per unit mass of fuel. The proportionality
in (53) results because the local rate of molecular mixing is about one-third the local
rate of entrainment, as has been shown in the jet-limit by Dahm & Dimotakis (1987)
and in the plume-limit by Cetegen et al. (1984). Thus, the integral equation for B(x)
becomes

d

dx
B(x) = Π

d

dx
m(x) (54)

where

Π =

(
g�hc

3cpT∞

)
. (55)
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Substituting (6a) for the mass flux m(x) in (54), and using δ(x) from (22a), gives

d

dx
B(x) = I1c

2
δΠ

d

dx
(x2uc), (56)

which integrates directly to give(
B(x)

/
ρeff

∞
)

= I1c
2
δΠ

(
x2uc(x) − x2

EucE

)
+

(
BE

/
ρeff

∞
)
. (57)

As above, xE is the x-location of the exit from the virtual origin, so that B(xE) =BE

and uc(xE) ≡ ucE.

4.2. The centreline velocity uc/u
∗ = f2(χ;Λ)

The momentum equation in (31) may be multiplied by x2 and rearranged to give

d

dx
(xuc)

3 = 3σx
(
B(x)

/
ρeff

∞
)
, (58)

where from (41)

σ = 2
3
(cu)

3
p. (59)

Substituting the result in (57) for the buoyancy flux gives

d

dx
(xuc)

3 = 3σI1c
2
δΠx3uc − x

[
3σI1c

2
δΠx2

EucE − 3σ
(
BE

/
ρeff

∞
)]

. (60)

In the dimensionless centreline velocity and downstream coordinate in (32) this
becomes

d

dχ
(χf2)

3 = Λχ3f2 − χ
[
Λχ2

Ef2(χE) − 2(cu)
3
p

]
, (61)

where

Λ ≡ 2I1c
2
δ (cu)

3
p

(
J0

/
ρeff

∞
)5/4(

B0

/
ρ

eff
∞

)3/2
Π, (62)

and where J0 is obtained from (46) and B0 = BE as noted in § 3.4. This may be put in
a more compact form by defining

w ≡ (χf2)
3, (63a)

b ≡ Λχ2
Ef2(χE) − 2(cu)

3
p, (63b)

for which (61) becomes

dw

dχ
= Λχ2w1/3 − bχ. (64)

The result in (64) is a single equation for f2(ξ;Λ) that can be numerically integrated
from initial values χE and wE determined by the exit mass, momentum and buoyancy
fluxes, mE , JE and BE , to determine the centreline velocity uc(x;Λ) in exothermic
reacting turbulent buoyant jets.

4.3. Application to cases with BE < 0

Before returning to (64), we show here that it applies even in certain cases for
which BE < 0, as can occur in many practical applications. Specifically, when the exit
buoyancy flux BE is sufficiently small in comparison with the total added buoyancy
flux (BL −BE) from heat release between the exit and the flame tip (here the subscript
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L denotes quantities at the flame tip location x = L; see § 5), then B(x) is dominated
by the heat release and the effect of BE becomes negligible. From (54), this is the case
whenever the fractional increase in buoyancy flux due to heat release is sufficiently
large, namely when

(BL − BE)

|BE | =

(
Π

mE

|BE |

)(
mL

mE

− 1

)
� 1.

From § 5, it can be shown that

mL

mE

=
20√

π
I1c

2
δ (cu)j (1 + ϕ),

where ϕ is the stoichiometric ambient-to-exit fluid mass ratio. Thus, BE is negligible
when (

Π
mE

|BE |

)(
20√

π
I1c

2
δ (cu)j (1 + ϕ) − 1

)
� 1.

Since ϕ � 1 for hydrocarbon fuels issuing into air, this requirement is clearly satisfied
in most practical circumstances. In such cases, BE could be set to zero; however, to
avoid l∗ → ∞ and u∗ → 0 in (17a) and (17b) and Λ → ∞ in (62) with (46), BE can
equally well be set to any negligible positive value; e.g. |BE | as done herein.

4.4. Practical implementation

For given values of the exit mass, momentum and buoyancy fluxes, mE , JE and BE

in (2a)−2(c), the result in (64) can be readily applied as follows to determine the
centreline velocity uc(x; Λ), and thus with δ(x) = cδx in (22a) to thereby determine the
resulting mass, momentum and buoyancy fluxes, m(x), J (x) and B(x) via (6a)−(6c),
as well as quantities such as the entrainment and mixing rate dm/dx:

(i) For exothermic reacting cases, the effective ambient fluid density ρeff
∞ is first

computed via (51) and ρ∞ is everywhere replaced by ρeff
∞ ; for non-reacting

cases the ambient fluid density ρ∞ applies throughout.
(ii) If JE > J ∗ in (48), then χE is obtained from (47), which applies between

the ideal point source and the exit of the actual finite-area source, namely
0 � x � xE , since even in exothermic cases no heat release occurs before the
flow issues from the actual source. From χE the momentum flux J0 of the
equivalent ideal point source is obtained from (46). The buoyancy flux B0 of
the equivalent point source is then B0 =BE , since no heat release occurs in
the range 0 � x � xE . From J0 and B0, l∗ and u∗ are obtained via (17a) and
(17b).

If JE < J ∗, then xE = x∗
E − (x∗ − x0) where x∗

E is from (16) and (x∗ − x0)
is from (50) with J ∗ from (48). In such cases, B0 = BE but J0 = 0, and thus
the flow for x � x∗ is a reacting plume. To avoid l∗ = 0 and u∗ = ∞, J0 can
be set to any sufficiently small value so that χE = xE/l∗ is in the plume limit
χE > 10. From J0 and B0, l∗ and u∗ are obtained via (17a) and (17b).

(iii) From χE and the constants (cµ)j and (cµ)p given in (8b) and (13b), the
corresponding f2(χE) is obtained from (42), which applies in the range
0 � x � xE since no heat release occurs before the flow issues from the actual
source; ucE is then obtained from u∗ via (18b).

(iv) The initial value wE is obtained from χE and f2(χE) via (63a).
(v) Λ is obtained from (62) with I1 given by (5a), cδ by (22b), and Π from (55)

with T∞ the actual ambient fluid temperature.
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Figure 6. Centreline velocity uc(x) in exothermic reacting turbulent buoyant jets from
integration of (64), showing the effect of increasing the source exit velocity UE with fixed
exit diameter (dE = 1 cm) for a C3H8 jet issuing into air. Exit values mE , JE and BE in
(2a)–(2c) differ for each UE values, leading to different initial conditions χE in (47). Results
are shown for five different exit velocities (UE = 1, 5, 10, 50, 100 m s−1) (solid lines) from jet
exit to flame tip, with non-reacting curve (dashed line) from figure 2 shown for comparison.
Velocity initially decays for all cases, but for strongly buoyant cases subsequently increases as
buoyancy accelerates fluid.

(vi) Equation (64) is integrated forward from the initial condition (χE , wE); the
integration continues until the flame tip criterion in (73) is reached (see § 5),
with κ from (77).

(vii) For χ beyond the flame tip, the integration can be continued, but no further
heat release occurs, and thus, past this point, Λ in (64) is set to zero with the
result that B(x) remains constant from there on; from Part 1, past the flame
tip, the effective density is determined by the lean branch of T (X), and thus
ρ0 is replaced by ρ

eff
0 and ρeff

∞ is replaced by ρ∞.
(viii) The resulting w(χ) then gives the centreline velocity uc(x) via (32a) and (32b);

the local flow width δ(x) is obtained trivially from (22a) and (22b).
(ix) The resulting uc(x) and δ(x) can then be used to obtain the mass flux m(x)

via (6a), the momentum flux J (x) via (6b), and the buoyancy flux B(x) via
(6c), with the density ρ∞ replaced by ρeff

∞ from (51).

4.5. Sample results

Figures 6–8 show example results obtained from this integral method for various
parametric effects on the centreline velocity uc(x) in exothermic reacting buoyant jets.
Figure 6 gives results showing the effect of the source exit velocity UE in (2a)–(2c),
figure 7 shows the effect of AE in (2a)–(2c) via the exit diameter dE , and figure 8 shows
the effect of the fuel type. Each curve in these figures shows results from the exit
location xE to the flame tip corresponding to the criterion in (73) below. The dashed
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Figure 7. Similar to figure 6, but showing the effect of decreasing the exit diameter dE with
fixed exit velocity (UE =10m s−1) for a C3H8 jet issuing into air. Exit values mE , JE and BE

in (2a)–(2c) differ for each dE value, leading to different initial conditions χE in (47). Results
are shown for five different exit diameters (dE = 50, 10, 5, 1, 0.5, 0.1 mm) (solid lines) from jet
exit to flame tip, with non-reacting curve (dashed line) from figure 2 shown for comparison.

curve in each case is the non-reacting result in (42) for otherwise identical conditions,
allowing comparisons with each solid curve to show the effect of heat release. In
each case the centreline velocity initially follows the non-reacting curve, and then
as the buoyancy flux B(x) increases significantly beyond its source value BE due to
combustion heat release, the solid curves depart from the non-reacting curve. In most
cases shown, the centreline velocity reaches a minimum at some downstream location,
beyond which it increases as the added buoyancy due to heat release accelerates the
fluid more rapidly than the increase in δ(x) can spread the added momentum across
the lateral direction.

In particular, figure 6 shows results for a propane jet issuing into air through a
constant 1 cm exit diameter dE for exit velocities UE ranging from 1 m s−1 to 100 m s−1.
The former produces low exit values mE , JE and BE that correspond to initial values
χE as large as 3, and thus the flow is already between the jet-like and plume-like
limits even at the exit. By contrast, for UE = 100 m s−1 the comparatively high exit
values mE , JE and BE produce initial values χE as small as 0.02, for which the flow is
initially jet-like. For all χE values, the centreline velocity decrease initially follows the
non-reacting form given by the dashed line, until the added buoyancy flux due to heat
release becomes significant relative to the initial value BE . At this point, the rate of
velocity decay becomes slower than in the non-reacting jet. Each curve continues to
the χ value corresponding to the flame tip location χL as determined in § 5. For cases
that extend to sufficiently large χ , the centreline velocity increases with increasing
downstream distance χ owing to the effect of the added buoyancy.
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Figure 8. Similar to figures 6 and 7, but showing the effect of fuel type for various fuels
issuing into air with fixed exit diameter and exit velocity (dE =5 cm, UE = 10 m s−1). Results
are shown for eight fuels (solid lines) from jet exit to flame tip, with non-reacting curve from
figure 2 (dashed line) shwon for comparison. Exit values mE , JE and |BE | in (2a)–(2c) change
for each curve owing to differing exit densities ρE , leading to different χE values in (47). Heat
release parameter Π in (55) also varies with fuel type, as does stoichiometric mass ratio ϕ in
(72), leading to differences in flame lengths.

Figure 7 shows similar results for propane–air flames, but here UE is kept constant
at 10 m s−1 and the dE is varied from 0.1 mm to 50 mm. The smallest exit diameter
produces exit values mE , JE and BE that correspond to a small initial value χE , while
for dE =50 mm the resulting mE , JE and BE produce a comparatively large χE . Each
curve again extends to the corresponding flame tip value χL. Comparing with the
previous figure, it is apparent that the only difference between figures 6 and 7 is in
the initial value χE for each case, since the fuel type is the same, and thus the curves
fall onto a continuous family parameterized by χE .

In figure 8, the exit diameter and velocity are held constant, and the fuel type is
varied. Thus, each curve begins at the same initial value χE , and extends to the flame
tip value χL, which depends on the stoichiometric fuel–air mass ratio ϕ as shown
in § 5. The fuel heating value Π in (55) also differs among these fuels, and thus so
does Λ in (62) and (64). The combined effects of Λ and ϕ lead to the differences
in the centreline velocity decay seen in figure 8. Note that, with the exception of
hydrogen (H2) and carbon monoxide (CO), the differences among the remaining
fuels are fairly small. It is for this reason that most previous studies of buoyancy
effects in jet flames have been based on correlations for ‘typical’ fuels. However, the
present approach requires no such restriction or empiricism, and applies equally from
momentum dominated jet flames to purely buoyant pool fires.

Figures 9–11 show results from the present integral method for the mass flux m(x),
momentum flux J (x), and buoyancy flux B(x) from (6a)–(6c) along the length of a
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Figure 9. Mass flux m(x) in (6a) for exothermic reacting turbulent buoyant jets of propane
issuing into air, obtained from integration of (64). Results are shown from jet exit at χE to
flame tip at χL for seven combinations of exit diameter dE and exit velocity UE in table 1. Exit
values mE , JE and |BE | in (2a)–(2c) differ for each curve, leading to different initial values χE

in (47). Note that mass flux increases as m(x) ∼ x in the jet limit χ � 1, in accordance with
(9), and transitions to m(x) ∼ x5/3 in the plume limit χ � 1, in accordance with (14a).
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Figure 10. Momentum flux J (x) in (6b) for the same cases as shown in figure 9. Note that
the momentum flux remains constant in the jet limit χ � 1, and subsequently increases as
J (x) ∼ x4/3 in the plume limit χ � 1 in accordance with (14b).



244 F. J. Diez and W. J. A. Dahm

103

102

101

100

10–2 10–1 100 102 102

B(χ)/ρ∞
eff

————
g u* l*2

χ ≡ x/l*

10–3

10–2

10–1

Figure 11. Buoyancy flux B(x) in (6c) for the exothermic reacting turbulent buoyant jets in
table 1. In accordance with (54) and figure 9, the buoyancy flux increases as B(x) ∼ x in the
jet limit χ � 1, and as B(x) ∼ x5/3 in the plume limit χ � 1.

UE (m s−1) dE (mm) xE/l∗ ucE/u∗

100 1 0.006 1220
100 5 0.013 546
10 5 0.132 54.6
10 10 0.187 38.6
5 10 0.378 19.2
1 5 1.574 5.1
0.8 10 8.936 2.0

Table 1. Exit velocity UE and exit diameter dE for exothermic reacting turbulent buoyant jets
of propane issuing into air shown in figures 8–10. Resulting exit values mE , JE and BE in
(2a)–(2c) produce different initial values xE from (47) and corresponding ucE values from (42),
as well as different values of the Morton length and velocity scales l∗ and u∗ from (17a) and
(17b).

reacting propane jet issuing into air for each combination of exit velocity UE and
exit diameter dE given in table 1. The corresponding exit conditions xE and ucE from
(47) and (42), normalized by the Morton length and velocity scales l∗ and u∗ from
(17a) and (17b) with (46), are also shown in table 1. Each curve in these figures shows
results from the exit location xE to the flame tip corresponding to the criterion in
(72). The curves each start at their respective χE value on the dashed line obtained
from the non-reacting result in figure 3, and depart in a manner that depends on
their respective Λ value.
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Figure 12. Centreline dynamic pressure ρcu
2
c in exothermic reacting turbulent buoyant jets,

comparing experimentally measured values of Becker & Yamazaki (1978) (symbols) with
corresponding results from present integral method (lines). Experimental conditions for each
case are given in table 2. For clarity, each case has been shifted vertically by one decade.

UE (m s−1) dE (mm)

17.6 4.6
27.3 4.6
42.2 4.6
59.6 4.6
79.0 2.5

Table 2. Exit velocity UE and exit diameter dE for exothermic reacting turbulent buoyant jets
of propane issuing into air from Becker & Yamazaki (1978), shown in figures 11–13 and listed
in the same order as they appear in the figures.

Figures 12–14 provide comparisons with various quantities – obtained from experi-
mentally measured values in the propane–air flames of Becker & Yamazaki (1978), for
which the corresponding exit velocity UE and exit diameter dE are given in table 2.
In each case, results obtained from the present integral method for the same exit
conditions, shown by the solid curves, are seen to compare well with the corresponding
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Figure 13. Mass flux scaling ρcucδ
2 in exothermic reacting turbulent buoyant jets, comparing

results obtained from measured data of Becker & Yamazaki (1978) (symbols) with
corresponding results from present integral method (lines). Experimental conditions for each
case are given in table 2. For clarity, each case has been shifted vertically by one decade.

measured values. Each of the curves is obtained as outlined above, with no adjustable
parameters to force agreement with the measured values. Each curve continues up to
the flame tip obtained from the criterion in (73) in the following section.

5. Flame length of exothermic reacting buoyant jets
The flame tip occurs at the downstream location where the centreline value of

the source–fluid mixture fraction ζc(x) reaches the stoichiometric value ζs , as shown
below.

5.1. The flame tip criterion

Since the mixture fraction is a conserved scalar, the total scalar flux integral

mζ =

∫ ∞

0

ρuζ (x, r)2πr dr (65)

is an invariant of the scalar field. In a manner similar to (6a), this can be written as

mζ (x) ≈ I4ρ
eff
∞ ζc(x)uc(x)δ2(x), (66)
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Figure 14. Momentum flux scaling ρcu
2
cδ

2 in exothermic reacting turbulent buoyant jets,
comparing results obtained from measured data of Becker & Yamazaki (1978) (symbols) and
corresponding results from present integral method (lines). Experimental conditions for each
case are given in table 2. For clarity, each case has been shifted vertically by one decade.

where we have additionally made use of

ζ̄ (x, r)

ζc(x)
= h(η), (67)

with h(η) as given in (3b). This gives the mean centreline mixture fraction as

ζc(x) =
1

I4

mζ

ρ
eff
∞ uc(x)δ2(x)

, (68)

and defining the mixture fraction ζE at the exit of the actual source as

ζE =
mζ

mE

(69)

gives

ζc

ζE

=
1

I4

mE

ρ
eff
∞ uc(x)δ2(x)

. (70)
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Substituting from (22a, b) and (32a, b), with (17a, b), then gives

ζc

ζE

=
1

I4c
2
δ

[(
mE

/
ρeff

∞
)(

BE

/
ρeff

∞
)1/2(

J0

/
ρ

eff
∞

)5/4

]
1

χ2f2(χ)
, (71)

where J0 is as discussed in § 4.4. We will use ϕ to denote the stoichiometric ambient-
to-exit fluid mass ratio; thus for example, for a source issuing pure methane (CH4)
into air, the stoichiometric mass ratio is ϕ = 17.2. In terms of the source–fluid mixture
fraction, the stoichiometric requirement is

ζs

ζE

=
1

1 + ϕ
, (72)

where ζs is the stoichiometric mixture fraction. The flame tip occurs at x = L where
the centreline mixture fraction ζc(x) reaches a value proportional to the stoichiometric
requirement, namely ζc(L) = κζs . Substituting in (71) gives the criterion for the flame
length L as

χ2
Lf2(χL) =

1

I4c
2
δκ

[(
mE

/
ρeff

∞
)(

BE

/
ρeff

∞
)1/2(

J0

/
ρ

eff
∞

)5/4

]
(1 + ϕ). (73)

The integration of (64) thus continues until the left-hand side of (73) reaches the
value on the right, at which point the flame tip location χL ≡ L/l∗ has been reached.
It is in this manner that the stoichiometric fuel–air mass ratio ϕ enters in setting the
flame tip location. The value of κ on the right-hand side of (73) can be obtained from
the jet-limit flame length scaling in Part 1, namely

L/d+ = 10(1 + ϕ), (74)

by taking the limit χ → 0 in (73), using (36) and (38) with (8b), together with (18c)
and (17a), which give

(L/d+) =

√
π/2

I4c
2
δ (cu)j κ

(1 + ϕ), (75)

where

d+ =
(
ρ∞

/
ρeff

∞
)1/2

d∗ (76)

and d∗ is defined in (11). Thus,

κ =

√
π

20I4c
2
δ (cu)j

, (77)

and from values above for the various constants (77) gives κ ≈ 0.69. With this value
of κ , (73) gives the mean luminous flame tip location, since the factor of 10 in (74)
is from a compilation of luminous flame length data (Dahm & Dimotakis 1987);
other values of this factor correspond to other definitions of the flame length. Flame
length fluctuations �L around the mean length L in (73) are due to mixture fraction
fluctuations produced by the local large-scale structure of the flow, and thus �L ≈ δ(L)
(Dahm & Dimotakis 1987; Mungal & Hollingsworth 1989) with δ(L) from (22a) and
22(b).

5.2. The flame length scaling parameters Ω and Λ

It is apparent that χL depends on the combination of parameters on the right-hand
side of (73), as well as the heat release parameter Λ that appears in (64) for f2(χ),
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and thus

χL = F

{[(
mE

/
ρeff

∞
)(

BE

/
ρeff

∞
)1/2(

J0

/
ρ

eff
∞

)5/4

]
(1 + ϕ); Λ

}
. (78)

From (18c) together with l∗ from (17a), d+ from (75) and d∗ from (11), the left-hand
side of (78) can be expressed in terms of the jet-limit flame length scaling in (74) as

L

d+(1 + ϕ)
= G{Ω; Λ}, (79a)

Ω =

[ (
J0

/
ρeff

∞
)5(

mE

/
ρ

eff
∞

)4(
BE

/
ρ

eff
∞

)2

]
(1 + ϕ)−4. (79b)

The flame length scaling in (79) differs from that of Blake & McDonald (1995) and
Blake & Cote (1999), and also from the results of Delichatsios (1993). The latter is
based on dimensional arguments and scaling considertions in terms of a ‘fire Froude
number’ to correlate flame lengths from the momentum-dominated to the buoyancy-
dominated regime. In the present result, Ω and Λ can be seen to be the two
parameters that properly determine the effects of buoyancy on the flame. As shown
above, these parameters result directly from the governing equations, and differ from
the buoyancy parameter ξ obtained heuristically by Becker & Yamazaki (1969) or
from the fire Froude number of Delichatsios (1993). Note that the parameter Ω is
independent of any heat release, and characterizes the extent to which buoyancy
introduced at the source increases the total momentum of the flow over the
downstream distance required to entrain and mix the required mass of ambient fluid
demanded by the stoichiometric ratio ϕ. The parameter Λ gives the buoyancy effect
due to exothermicity; in conjunction with the former, it determines the additional
momentum increase that results from buoyancy created by the density reductions
due to heat released within the flow over the downstream distance required to entrain
and mix the stoichiometric mass of ambient fluid.

Buoyancy-free flames thus correspond to the simultaneous limit Ω → ∞ and Λ → 0,
in which the flame length in (79a) must follow the jet-limit scaling in (74), namely
G{Ω;Λ} ≡ 10. Even without any heat release, if mE , JE , BE , ρeff

∞ and ϕ are such that
Ω is sufficiently small then buoyancy will cause the flame length to depart from this
jet-limit scaling. Results in the following section show that, for Λ values typical of
most combustion situations, this occurs at about Ω ≈ 106. For Ω values substantially
smaller than this, in the Λ → 0 limit the flame length can be shown from (14a), (69)
and (71) to scale as

L

d+(1 + ϕ)
∼ Ω1/10. (80)

Results in the following section confirm this scaling, and show that it is largely
independent of the heat release parameter Λ for the fuel types in table 3 and the
range of exit conditions considered there.

5.3. Comparisons with measured flame lengths

Figure 15 compares measured values for flame lengths of exothermic reacting
turbulent buoyant jet flames over a wide range of conditions, shown in table 3, with
corresponding results obtained with the present integral method. The flame lengths are
shown in the form of (79), from which it is apparent that the Ω values for these flames
span from deep within the buoyancy-dominated plume limit, where G{Ω} ∼ Ω1/10,
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Reference Symbol Fuel UE (m s−1) dE (mm)

Becker & Liang (1978) � CH4 23.8 4.6
CH4 32.5 4.6
CH4 48.5 4.6
CH4 75.6 4.6
CH4 88.5 4.6
CH4 115 2.5
CH4 124 2.5
CH4 173 2.5
CH4 187 2.5
CH4 201 0.7
CH4 132 0.7

Muñiz & Mungal (2001) + 0.4 CH4 + 0.6 N2 36 4.6
0.4 CH4 + 0.6 N2 134 4.6

Hawthorne, Weddell & Hottel (1949) � CO 17.8 6.4

Hawthorne et al. (1949) � H2 65.6 4.8

Becker & Yamazaki (1987) � C3H8 3.5 4.6
C3H8 7.8 4.6
C3H8 17.6 4.6
C3H8 27.3 4.6
C3H8 42.2 4.6
C3H8 59.6 4.6
C3H8 79.0 2.5

Hawthorne et al. (1949) � C2H2 23.2 3.2
C2H2 31.8 3.2

Wohl, Gazley & Kapp (1949) � C4H10 0.91 10
C4H10 1.24 10
C4H10 1.90 10

Table 3. Fuel type, exit velocity UE and exit diameter dE for exothermic reacting turbulent
buoyant jets issuing into air in figure 14, listed in same order as they appear in the figure.

to the momentum-dominated jet limit, where G{Ω;Λ} ≡ 10. The plume-limit scaling
is seen to apply for Ω < 104, and the jet-limit scaling applies for Ω � 106. The effect
of the heat release parameter Λ introduces comparatively small differences among
the various curves in figure 15, but the effect of Ω is seen to be far more significant,
at least for the conditions reflected in table 3. In each case, it is apparent that the
flame lengths obtained from the present integral method compare well with the
experimentally measured values. This provides further support for the validity both
of the equivalence principle from Parts 1 and 2, and for the present integral method
for addressing buoyancy effects in exothermically reacting buoyant jet flames.

6. Concluding remarks
Although computational simulations are increasingly being used to predict the

characteristics of exothermic reacting turbulent shear flows for combustion applica-
tions, in practice, simple scaling laws are far more widely used to obtain estimates of
the resulting integral properties, such as the entrainment and mixing rates, as well as
the flame length and other quantities that are of key practical interest. While there
are fundamentally-based scaling laws for the integral properties of non-reacting shear
flows, at present scaling laws for exothermic reacting shear flows are based either
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Figure 15. Comparison of measured buoyant jet flame lengths (symbols) in table 3 with
results from the present integral method (lines), shown in the form of (78). Non-buoyant
flames showing the jet-limit scaling in (74) require Ω � 106. Buoyancy-dominated flames show
the Ω1/10 plume-limit scaling obtained for Λ= 0 in (80), even for Λ values corresponding to
all cases in table 3. Symbols are defined in table 3; each data set has been shifted upward by
one decade for clarity.

on entirely empirical correlations, or on empirical adjustments to the scaling laws
for non-reacting flows. There has been debate as to whether it is even conceptually
possible to extend scaling laws from non-reacting flows to exothermically reacting
flows without substantial resort to empiricism.

It is apparent that heat release can produce changes in numerous comparatively
detailed aspects of shear flows (e.g. Han & Mungal 2001; Muñiz & Mungal 2001),
but from a practical perspective these are only important insofar as they contribute
to changes in the integral flow properties. The present results, together with those
in Parts 1 and 2, comprise a significantly improved understanding of how the heat
released in exothermic chemically-reacting turbulent shear flows alters the integral
flow properties relative to a corresponding non-reacting flow under otherwise identical
conditions. These results also provide fundamentally-based methods that extend the
scaling laws for non-reacting flows to account for both the inertial effects and
buoyancy effects produced by heat release in the corresponding reacting flow.



252 F. J. Diez and W. J. A. Dahm

Part 1 showed that changes in the inertia of the fluid resulting from the reduced
densities produced by heat release in mixing-limited reacting shear flows can be
accounted for by a fundamental equivalence principle, in which the ambient density
ρeff

∞ is replaced by an effective density ρeff
∞ determined via (51) by the stoichiometric

temperature Ts and mole fraction Xs . Part 1 showed that this equivalence accurately
predicts the heat release effects in the near and far fields of planar and axisymmetric
turbulent jet flames over a wide range of conditions, including the reduced entrainment
due to heat release in turbulent jets as well as the effect of heat release on the flame
length. The equivalence also accurately predicted the much stronger effect of heat
release in the far field of planar jets than in axisymmetric jets, and the much larger
increase in near-field length owing to heat release in planar turbulent jets than in
axisymmetric jets, in good agreement with observations and measurements. In Part 2,
this equivalence principle was further applied to address inertial changes due to heat
release on the entrainment and mixing properties of turbulent mixing layers. The
resulting scaling laws for exothermic reacting mixing layers accurately predicted the
very different effects of heat release that occur in that flow. The equivalence principle,
however, only accounts for the inertial effects due to the reduced densities produced
by heat release, and does not itself account for buoyancy produced by heat release.

Here, we have gone further to show how this equivalence can be extended to
exothermic reacting flows in which large buoyancy forces are present, where the
buoyancy flux can increase significantly along the length of the flame. The resulting
variation in buoyancy flux can produce important changes in the flow properties and
the flame length. The present study has developed an integral method for determining
the flame length and combustion properties of exothermically reacting buoyant jet
flames. The approach avoids the Morton entrainment hypothesis and thereby removes
the ad hoc ‘entrainment modelling’ required in most other integral approaches. Rather
than working with an integral equation for the entrainment rate dm/dx, we have
used the momentum flux to develop the equation for the local centreline velocity
uc(x). This has the advantage that the modelling can be done in terms of the
local flow width δ(x), for which dimensional considerations show that δ(x) ∼ x in
both the momentum-dominated jet limit and the buoyancy-dominated plume limit.
Experimental data further show that the proportionality constant cδ is identical in
both the jet and plume limits and remains constant between these two limits as well
(e.g. Papanicolaou & List 1988). Thus, whereas the Morton ‘entrainment coefficient’
α used in most integral methods varies between these two limits, and therefore must
be modelled on an ad hoc basis in terms of a local Froude number, cδ in the present
method is invariant between these limits and can be represented by a constant value
without any further modelling. In effect, the ‘entrainment modelling’ that is required
in traditional integral approaches has been replaced in the present method by the
observed constant value of cδ.

For non-reacting buoyant jets, this new integral approach gives an exact solution
for uc(x) that provides excellent agreement with experimental data, as well as an
expression for the virtual origin. In exothermically reacting buoyant jets, the constant
cδ value in the integral equation for the buoyancy flux gives an expression for
B(x) in terms of the centreline velocity, and provides a simple integral equation for
uc(x) that can be readily solved for arbitrary exit conditions. The resulting uc(x)
determines the local mass flux m(x), the momentum flux J (x) and the buoyancy flux
B(x) throughout the flow, as well as the centreline mixture fraction ζc(x) and the
flame length L. Comparisons with data for the centreline velocity and flame length
in buoyant jet flames have shown excellent agreement over a wide range of flame
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conditions, and provides the parameters Ω and Λ that properly characterize the
extent to which buoyancy effects are significant throughout the flame.

Collectively, these results have shown that, when the inertial effects of the reduced
densities due to heat release have been properly accounted for via the equivalence
principle of Parts 1 and 2, then even the effects of buoyancy produced by heat release
can be directly obtained from the scaling laws for buoyancy in the corresponding
non-reacting flow under otherwise identical conditions. In other words, the essential
fundamental change produced in the flow due to heat release is the inertial change
resulting from the reduced density. Once this inertial effect has been accounted for
by the fundamental equivalence principle in Parts 1 and 2, then secondary effects of
heat release, including buoyancy effects, follow naturally from the scaling laws that
govern the non-reacting flow. In this manner, the equivalence principle allows scaling
laws for exothermic reacting flows to be directly obtained from the scaling laws for
non-reacting flows.

The resulting understanding of how heat release effects are properly accounted
for in extending scaling laws for non-reacting flows to exothermic reacting flows
allows the large body of existing results from non-reacting shear flows to be applied
in combustion science. These include such important practical applications such as
the sooting and emissions properties of buoyant flares in the oil and gas industry
(e.g. Johnson, Spangelo & Kostiuk 2001). The equivalence principle and the integral
method for buoyancy effects presented here can be extended to address crossflow
effects on the entrainment and mixing properties of such flares, which would provide
scaling laws for flame lengths and emissions properties (e.g. Johnson & Kostiuk 2000,
2002). The same applies to exothermically reacting jets in crossflow (e.g. Karagozian
1986, Nguyen & Karagozian 1992), as well as to heat release and buoyancy effects
in vertical enclosures and compartment fires (e.g. Abib & Jaluria 1995; Mercier &
Jaluria 1999), where effects of exothermicity on the resulting entrainment and mixing
properties can, in principle, be understood within the context of the equivalence
principle and the present integral method.
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